SAT Math Formula Sheet & Desmos Power Guide
Click any flashcard to flip and reveal the formula and examples.
Algebra & Linear Equations
(-2,5) & (4,-1): \( m = -1 \)
(a,2a) & (a+3,5a): \( m = a \)
Through (0,-3), slope -4: \( y=-4x-3 \)
(2,5) & (6,13): \( y=2x+1 \)
Slope -2, (4,-5): \( y+5=-2(x-4) \)
Slope m, (h,k): \( y-k=m(x-h) \)
(-3,7)&(5,-1): (1,3)
(a,b)&(c,d): \( \left( \frac{a+c}{2}, \frac{b+d}{2} \right) \)
(1,2)-(4,6): 5
(a,b)-(a+3,b+4): 5
3x-y=7 & 6x-2y=4
All lines with m=5
y=3x+1 & y=-1/3x+2
y=mx+b & y=-1/m x+c
5x-y=10
4x+0y=8 (vertical line)
Quadratics & Polynomials
\( 2x^2+3x-2=0 \): 0.5,-2
\( x^2-2x+5=0 \): \( 1 \pm 2i \)
y=2x²-8x+3: x=2
y=ax²+bx+c: x=-b/2a
x²-x-6=(x-3)(x+2)
2x²-7x+3=(2x-1)(x-3)
4x²-25=(2x+5)(2x-5)
9y²-16z²=(3y+4z)(3y-4z)
y²-10y+25=(y-5)²
a²+4ab+4b²=(a+2b)²
\( a^3-b^3=(a-b)(a^2+ab+b^2) \)
27y³-1=(3y-1)(9y²+3y+1)
a³-b³=(a-b)(a²+ab+b²)
x²+2x+5: -16
x²-6x+9: 0
Product: \( c/a \)
2x²+3x-2: sum=-3/2, prod=-1
x²+4x+4: sum=-4, prod=4
Exponents, Roots, & Polynomials
x?·x?=x¹¹
(3x²)³·3x?=3?x¹?
x?/x³=x²
(2y?)/(4y²)=½y³
(x²)?=x?
(3a²b³)²=9a?b?
x?³=1/x³
(2y)?¹=1/(2y)
8^{2/3}=4
81^{3/4}=27
x?=1
(3y²-7x?)?=1
?50=5?2
?18x?=3x²?2
|-3|=3
|x-2| is always non-negative
Geometry & Trigonometry
b=10, h=7: 35
b=x+2, h=3x: ½(x+2)(3x)
l=12, w=9: 108
l=x, w=x+5: x(x+5)
b=13, h=4: 52
b=x+2, h=2x: (x+2)(2x)
b?=8, b?=12, h=5: 50
b?=x, b?=2x, h=x: 1.5x²
r=7: 49?
r=x+1: ?(x+1)²
r=12: 24?
r=x: 2?x
Center(0,0), r=5: x²+y²=25
Center(h,k), r=r: (x-h)²+(y-k)²=r²
r=5, ?=90°: 6.25?
r=x, ?=120°: (1/3)?x²
r=8, ?=45°: 2?
r=x, ?=180°: ?x
a=5, b=12: c=13
a=x, b=2x: c=x?5
30-60-90: x,x?3,2x
30-60-90: x,x?3,2x
Hypotenuse 10 in 45-45-90: legs=5?2
l=2x,w=x,h=3: 6x²
l=a,w=b,h=c: abc
r=5,h=10: 250?
r=x,h=2x: 2?x³
r=6: 288?
r=x: (4/3)?x³
r=5,h=6: 50?
r=x,h=x: (1/3)?x³
l=a,w=2a,h=3a: 2a³
l=x,w=y,h=z: (1/3)xyz
Hexagon: 720°
Decagon: 1440°
cos(?)=adj/hyp
tan(?)=opp/adj
r=45, t=1.5: d=67.5
r=x, t=y: d=xy
Statistics, Probability & Data
3,7,8,12: 7.5
x,x+2,x+4: x+2
2,4,6,8: (4+6)/2=5
x,x+1,x+2,x+3,x+4: x+2
1,1,2,3,4,4: 1 and 4
5,5,5,6,7,8: 5
4,8,15,20: 16
x,x+5,x+10: 10
2 even on die: 3/6=1/2
2 aces in row: 4/52 × 3/51
0.4 and 0.5: 0.2
a and b: ab
4 appetizers, 5 entrees: 20
x shirts, y pants, z shoes: xyz
120mi in 3hr: 40mph
d miles, t hr: d/t
Sequences & Functions
a?=5, d=-2, n=6: a?=-5
a?=x, d=2x, n=5: a?=9x
a?=5, r=0.5, n=4: a?=0.625
a?=x, r=2, n=n: a?=x·2^{n-1}
a?=3, a?=15, n=5: S?=45
a?=x, a?=y, n=n: S?=(n/2)(x+y)
a?=1, r=2, n=5: S?=31
a?=x, r=y, n=n: S?=x(1-y?)/(1-y)
$2000, -10%/yr, 2yr: 1620
$x, r%, n yr: x(1+r/100)?
f(x)=x²-4x, f(2)=-4
f(x)=ax+b, f(y)=ay+b
Desmos SAT Calculator Tips
y = mx + b
) and use sliders to see how changing values affects the graph.
y_1 ~ mx_1 + b
to get the best-fit line for scatterplots.
y < 2x+3
) to see shaded solution regions.
f(x) = 2x^2 - 3
) and plug in values directly.
Quick Reference Table
Formula Name | Formula | Desmos Usage |
---|---|---|
Slope | \( m = \frac{y_2 - y_1}{x_2 - x_1} \) | Graph two points, draw line, check slope |
Slope-Intercept Form | \( y = mx + b \) | Graph line, adjust m and b with sliders |
Point-Slope Form | \( y - y_1 = m(x - x_1) \) | Graph using sliders for m, \( x_1 \), \( y_1 \) |
Midpoint | \( \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \) | Plot both points, use midpoint formula |
Distance Formula | \( d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \) | Plot points, use Desmos’s distance tool |
Quadratic Formula | \( x = \frac{-b \pm \sqrt{b^2-4ac}}{2a} \) | Graph quadratic, find x-intercepts |
Vertex of Parabola | \( x = -\frac{b}{2a} \) | Plot vertex, use sliders for a, b |
Factoring Quadratics | \( (x + a)(x + b) = x^2 + (a+b)x + ab \) | Expand/factor using Desmos |
Difference of Squares | \( a^2 - b^2 = (a+b)(a-b) \) | Expand/factor using Desmos |
Product Rule (Exponents) | \( a^m \cdot a^n = a^{m+n} \) | Check with table or direct calculation |
Quotient Rule (Exponents) | \( \frac{a^m}{a^n} = a^{m-n} \) | Check with table or direct calculation |
Power Rule (Exponents) | \( (a^m)^n = a^{mn} \) | Check with table or direct calculation |
Area of Triangle | \( A = \frac{1}{2}bh \) | Plot triangle, use formula for area |
Area of Rectangle | \( A = lw \) | Draw rectangle, use area formula |
Area of Circle | \( A = \pi r^2 \) | Use Desmos’s circle tool for visualization |
Circumference of Circle | \( C = 2\pi r \) | Use Desmos’s circle tool for circumference |
Pythagorean Theorem | \( a^2 + b^2 = c^2 \) | Plot triangle, use distance tool |
Special Right Triangles | 45-45-90: \( x, x, x\sqrt{2} \) 30-60-90: \( x, x\sqrt{3}, 2x \) |
Label triangle sides, check ratios |
Volume of Rectangular Prism | \( V = lwh \) | Use sliders for l, w, h to visualize volume |
Volume of Cylinder | \( V = \pi r^2 h \) | Use sliders for r, h to visualize volume |
Sum of Interior Angles (Polygon) | \( (n-2) \times 180^\circ \) | Table for different n values |
SOHCAHTOA | \( \sin = \frac{\text{opp}}{\text{hyp}} \), \( \cos = \frac{\text{adj}}{\text{hyp}} \), \( \tan = \frac{\text{opp}}{\text{adj}} \) | Label triangle, use calculator for ratios |
Exponential Growth/Decay | \( A = P(1 \pm r)^n \) | Enter as function, use table |
Arithmetic Sequence | \( a_n = a_1 + (n-1)d \) | Enter as function, use table |
Geometric Sequence | \( a_n = a_1 r^{n-1} \) | Enter as function, use table |
Mean (Average) | \( \text{Mean} = \frac{\text{Sum}}{\text{Count}} \) | Use table, compute sum/count |
Median | Middle value when ordered | Sort values in table |
Probability | \( P(A) = \frac{\text{favorable}}{\text{total}} \) | Use table for counting outcomes |
Distance = Rate × Time | \( d = rt \) | Enter as function, use sliders for r, t |
Test Day Tips
- Memorize any formula not on the SAT reference sheet.
- Use Desmos for checking, graphing, and confirming answers whenever possible.
- Underline or box what the question is actually asking before you start calculations.
- Practice with the official Desmos SAT calculator interface before test day.
Need Personalized SAT Help?
Get 1-on-1 tutoring with SAT experts who scored in the 99th percentile!
Free consultation available